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THE PNURSNVIT OF TRVUTH

PLATO: The Allegory of the Cave CREDIT: TED Ed






Euclid Descartes Russel

If controversies were to arise,
there would be no more need of disputation between

two philosophers than between two accountants. |
i For it would suffice to take their pencils in their hands, |
and say to each other:

Llull Hilbert Boole Leibniz Frege Newton Laplace

Wittgenstein Turing Shannon




COMPUTING: The beginning..

1961



COMPUTERS

~ 1997

The Connection Machine
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The Delta - Caltech Paragon - Caltech
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SOURCES: http:/ /www.computerhistory.org / timeline / computers /



http: / /www.testnewsonline.com /2012 /10/02 / deep-blue-beat-kasparov-because-of-bug /

SCIENCE FILE - Los Angeles Times
9 March 2017

No need for a poker face -
Software program DeepStack
beats the pros at Texas Hold 'Em

MindGoogle) winning Go against Lee Sedol, one of the world’s top go players.March 11, 2016


http://www.testnewsonline.com/2012/10/02/deep-blue-beat-kasparov-because-of-bug/

Al and Fluid Mechanics - The Lighthill Report (1973)

Lighthill’s main argument was that because one had to specify the rules in a computer to tell the robot how to

behave 1n every possible scenario, every attempt to come up with a general purpose robot would quickly turn

out to be an intractable problem, with a combinatorial explosion of possible solutions.

Lighthill's position does not come as a surprise. He
was, after all, a researcher in

fluid dynamics and aeroacoustics,
where it is easy to be misled by
complicated differential
equations involving 'continuous'’
variables and where nonexistent
solutions arise so often.

http://www.mathrix.org



FIRST PRINCIPLES

SOLVING PROBLEMS

Engineering
Physics

Lawyers

Experts

Life Sciences
Medicine
Social Sciences
Finance




How to solve hard problems?

Use lots of training data.

And a big deep neural network.

And success 1s the only possible outcome.

Ilya Sutskever (2015),
co-founder of OpenAl
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> Chaotic dynamics
Expensive to simulate and/or

challenging to forecast

How to design
Climate fast, methods that

capture/predict
system dynamics?

km

M Wildfires
Existing methods:

Surrogate models , ROMs
LES,RANS,DMD, .........

| Turbulence






The CTC iChip - M. Toner Group (Harvard U.)



SCIENTIFIC COMPUTING

Expensive Models based on First Principles

MACHINE LEARNING

Capabilities for Pattern Recognition



Example: Dimensionality Reduction -> PCA as NN

~ 2
E=]|Xx-x]|

ORIGINAL CONTRIBUTION

— WTW 2 Neural Networks and Principal Component Analysis:
— - X — X Learning from Examples Without Local Minima
P B D KurT H
(Re and z;cce )

Q%Q

Find W by minimizing £

/-

retain M < D eigenvectors




Non-Linear PCA - Autoencoders

activation function o derivative

o'(x) =1

o(x) ==

izﬂ(WZ’Z‘I‘bz) 2
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o) =1 - [(z))
o'(x) = max(0,1)
() = —

1l +e*

o(x) =In(1+e")

X

. . . = 2
» learns a function with target values equal to the input L = ‘ ‘X — X‘ ‘

» linear auto-encoder “equivalent” to PCA/POD



1Y In 1995~ 2" in 2019

FLOPS

YEAR



Deep Iearning’s Big Bang moment. ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca
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How to solve hard problems?

Use lots of training data.

And a big deep neural network.

And success 1s the only possible outcome.

Ilya Sutskever (2015),
co-founder of OpenAl



SCIENTIFIC COMPUTING ARTIFICIAL INTELLIGENCE

Mathematics Architectures

Exactness ALLOYS Statistics

Understanding Goals



The Vexation of Patterns

v'Machine Learning: Success for Pattern Recognition

= Patterns often present in Dynamical Systems

® Are there Latent spaces of Dynamical Systems?

@ Can Machine Learning iIdentify them?



TIME

an ML Frontier




Spatiotemporal Forecasting with ML models
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Can ML models forecast the dynamics
of UNSEEN data?

—>

TRAIN Forecast
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NNs for Dynamlcal Systems

Kuramoto S|vash|nsky

~J ~J ~/

L ~ 8 L~ 10 L~ 15

du; . U_» —4u,_+6u; —4u, | +u,_,
dt Ax*
.. —2u.+u u? | — u?
i+1 i T Ui i+1 — Ui—1
Ax? 4Ax

Integration with dt = 0.02 up to T = 10*
500.000 samples



Forecasting using LATENT Dynamics

LATENT DYNAMICS: FEA GYNSMICE

PCA, AUTO- ENCODERS,....

A A A

. . . ]l_l

true true
O_k+1 O_k+2 o

SHORT-TERM HISTORY
TRAIN
30
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Learning Effective Dynamics



Equation-Free Framework - Yannis Kevrekidis

propagate

[short times)
micro scale

- =
YV RESTRICTING /AVERAGING macro dynatmlcs
[micro — macro) propagator

e.g. ODE / analytic
e.g. PCA / DiffMaps / analytic
propagate

[long times)
A/A

macro scale
& LIFTING

[macro — micro)

Initialise D return to
macro scale micro scale

Theodoropoulos, C.; Qian, Y.H. and Kevrekidis, I.G. (2000). Proc. Natl. Acad. Sci. 97: 9840-9845.
f Gear, C.W,; Kevrekidis, I.G. and Theodoropoulos, C. (2002). Computers and Chemical Engineering 26: 941-963. »

AND MANY MANY MORE



PR Vlachas, G Arampatzis, C Uhler, P Koumoutsakos,

Learning Effective Dynamics e i o e S

' e g e os PSR o LN

Evolve latent dynamics Update the macro dynamics
with RNN-LSTM using the RNN
f':: o N Macro (latent) Macro (latent)
al e . dynamics 1 dynamics /,,

—_—p

1
- - - - 7

- e
- e

\

Micro dynamics Twarm ‘LIFT’
: : : dimensional space > g Encoding to latent
equations / simulations) space

Decoder: . .
Micro dynamics Tﬂ

macro to ’

.micro.map

I. Evolve micro dynamics

II. Project to Latent Space with AEs Undate th . q .
III. Train RNN-LSTM pdate the mICro dynamics

land continue training of RNN]




PR Vlachas, G Arampatzis, C Uhler, P Koumoutsakos,

. . Multiscale Sim.ulation.s of Complex Systems

LED
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Micro solver: Finite Differences solver ([CubimUP2D) employing 12 cores

State: velocity in x- and y- direction and pressure S, € R3*x512x1024

LED with latent dimension of d, = 2, At = 0.2

1 2 3 5 10 Latent

p="Tu/T,
LED captures long-term evolution of velocity and pressure fields (low NRMSE]) oot =
LED 1s up to two orders of magnitude faster than CubismUP2D % -
2D x
Recovers drag coefficient with &~ 2 — 4 % error %O'Og =

1 2 3 5 10 Latent
p:Tm/T,u



HYBRID LSTM - MSM
. LSTMY(z, 21 20 -
lp = MSMC,C(Zt)

) ifptmin(zt) > 0
ifptrain(zt) <0

PR Vlachas, W Byeon, Z Wan, T Sapsis, P
Koumoutsakos, Data-driven forecasting of
high-dimensional chaotic systems with long

short-term memory networks,
Proc. Roy. Soc. A , 2018
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PR Vlachas, J Pathak , BR Hunt, TP
Sapsis , M Girvan, E Ott and P
Koumoutsakos,

Backpropagation algorithms and Reservoir
Computing in Recurrent Neural
Networks for the forecasting of complex

spatiotemporal dynamics,
Journal of Neural Networks, 2020
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PR Vlachas, G Arampatzis, C Uhler, P
Koumoutsakos, Multiscale Simulations of
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Dynamics, Nature Machine Intelligence, 2022
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Neural Networks, 2024

PR Vlachas, J Zavadlav, M Praprotnik, P Koumoutsakos,
Accelerated Simulations of Molecular Systems through
Learning of their Effective Dynamics,

Journal of Chemical Theory & Computation, 2021
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for Long-Term Forecasting, PrBerm() [0 Ay “{~ e

ZMh| 1) Z(h) Z(h) Z(h)
Bt—L+l_> R(z,h) JL— -EP R(z,h) LLP R(z,h) - Tl » R(z,h) Jhl
Tl h,_;.» : T h,_, Tl h, J +1
71 e 7, , \_)



Adaptive LED interpretable LED



Generative LED



Generative Al : Probabilistic Approach to Unsupervised Learning

Enormous progress In unsupervised learning using generative models

Stable Diffusion DALL-E (Open Al)

BREAKTHROUGH : pose learning as a problem of density estimation:

View the data {xiyflas samples from the unknown probability distribution pu:
=

- calculate an estimate & of u , and
- generate new data via sampling of j .



Score-Based Diffusion Models

Song et al. arXiv:.2011.13456 (2021);
Hyvarinen JMLR 6 (2005);

Vincent, Neural Comp. 23, 1661 (2011)

Given data from the target U;:

- Devolve them into Gaussian noise using e.g. an Ornstein-Ulhenbeck process;
- Time-reverse the SDE to generate new samples from u; from samples from N(0,/d);

\

From Song'’s paper

Builds a path in distribution space between u, and N(0,Id);

[ .

Reduces problem to the simulation-free regression of the score.

>




GUIDED Variational Diffusion Model

Diffusion model “learns” to reverse this process with guidance z,

pPXo | x5 20) pOG_q x5 20) p(x;| Xy 15 20) pxXr_y | xp 20)

1. Input is steadily noised until it becomes identical to Gaussian noise



GH PRYSICS

Generate data from a conditional distribution p(x |z) through conditioning information z .

Latent Dynamics as Guidance for Learning Effective Dynamics



4o




Generative Learning of Effective Dynamics (G-LED)

> Instances of high dimensional data are down sampled to a lower
dimensional manifold that is evolved through an auto-regressive
attention mechanism.

In turn, Bayesian diffusion models, that map this low-dimensional
manifold onto Its corresponding high-dimensional space, capture
the statistics of the system dynamics.



Forecasting

Spatiotemporal systems

Micro level

Time :

Sequence net can be RNN, LSTM, Transformer And En/
Decoder can be variational, PCA or other

Micro level : Initial Condition (Space) a7



- FORECASTING | :
Diffusion Models I Micro level




How to train the Diffusion model ?

(Forward process: adding noise to the training data)
€; ~ q€;|8) == N(s, 01.21)

- 5 €

- €, Andoy islargetenoughs.t.ey ~ N (s,oyl) = N (0,0y5]1)
S € € € € p €
3 1 p N — 1 p ok
...... e _ inv inv _ ,’inv -

The training is supervised, DNN, : (€¢,,2,1) — S,
S A DNN is trained to denoise s & DNN(¢;, 7, 1),

DNN is a 3-D UNet, and z the latent state

49



Decoding using the Diffusion Model:

(Reverse process)

Firstly, sample a white noise as a starting point: €y, ~ /(0,05 1)

: N / TP, Y= A GZ%I-I o 61'2 DNN(e’ N 61'2 / (Glgl-l o 61'2)61'21
Then, from N_to 1, apply €; ~ p(€;| €}, |, 2,1) := > (€415 2, 1) 5 €it1 5
Oii1 . . 0y Oit1

denoised s’ given z

During predictions, €y, is a new white noise and the sampling is
stochastically achieved as

, o e 6% | — of DNN(e! .ot (64 -0} I
€; ~ple;le;,2,0) = > (€/41,2,0) + — it >
0ii1 g . 0 0i11

denoised s’ given z

Since the reverse diffusion process is trained on z, the
decoding process has a low variance compared to diffusion
models in computer vision.

50



What about known physical constraints (or partial information) ?
Incorporate as (virtual) observables via Gradient Guidance !

* S.Kaltenbach and P.-S. Koutsourelakis: Incorporating physical constraints in a deep probabilistic machine learning framework
for coarse-graining dynamical systems, J. Comp. Physics, 2020

1: Formulate physical information as a residual R(s,). |
In case we have some equation with governing dynamics |
E ﬁ(st) = () then we can also formulated a residual such as ’ p(e;| R =07z =
virtually observed with R (s)=0%*

p(R =0|z,€)p(e;| z)
C

- 2: Use Bayes Law to condition the current state

of the diffusion process on the residual. An estimate for s, ' =|V_log p(f{ = 0|e,z)| + V., log p(e. | z)
' is obtained based on z, using the trained NN. !

New term due to physical information

3: Use the modified gradient in the reverse diffusion
process

51




Micro level

Physics 1s incorporated
as virtual observables
via gradient guidance

- Macro level

Spatiotemporal systems

52




G-LED Results: 1-D Kuramoto-Sivashinsky equation

ou o'u  0‘u oul G-LED: Manifold
— = — U—
ot ot*  ox? ox

Q =[0,22] with u(0,0) =u(lL,?) and v =1

G-LED Numerl.cal G-LED I\.Iumerl.cal G-LED I\.Iumerl.cal
simulation simulation simulation

Time Time Time Numerical simulation: Manifold

test trajectories with new initial condition.
The vertical direction depicts the time t from 0 to 96s where the first 16s used an 1nitial conditions for warm-up. 21K
trajectories are used for training and 19K for testing.

53



G-LED Results: Outperform different diffusion modeling methods

Video-Diff
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Video-Diff: Video diffusion models. Advances in
Neural Information Processing Systems, 395,

38633-864

6.

\\ N\
\ \
\
\
N\

/AN 0 -
>
S
V R
—21 X Video-Diff
> Guid-Diff
. () G-LED
----- LES
| 0.5 1.0 1.5 2.0
y

Guidance-Diff: Bayesian conditional diffusion

models for versatile spatiotemporal turbulence

generation. Computer Methods in Applied
Mechanics and Engineering, 427, 117023.
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Forward and reverse processes in G-LED: Summary

KEY ISSUES :

1. Diffusion models are associated with large variations in the generated samples.
 |n G-LED sequence of shapshots are correlated by the underlying physical process via
macro seqguences.
e Condition the denoising process on the latent states.

2. G-LED decodes multiple consecutive macro states together as a batch (similar to Sora]) to
enhance temporal coherence and increase temporal smoothness in the results.

55



Geometry of flow domain (solid lines),
area of interest (shadowed zone)

Streamwise velocity from t=0s to 1.25s

G-LED LES

Wallnormal velocity from t=0s to 1.25s

The spatial domain is discretized with a 512x512 uniform grid the snapshots are subsampled with a larger time step Dt = 0.05. 8000 snapshots are used for training, $500$ snapshots are for validation and
1500 snapshots are for the testing.



x=0

Mean stress of streamwise-wallnormal velocity

Video-Diffusion: Video diffusion models.
Advances in Neural Information Processing
Systems, 35, 8633-8646.

Guidance-Diffusion: Bayesian conditional diffusion
models for versatile spatiotemporal turbulence
generation. Computer Methods in Applied
Mechanics and Engineering, 427, 117023.
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Turbulent channel flow Re_ = 395

LES =40x50x30

G-LED z=8x32x8

LED
LES
AR-CNN

CNN-SR

wall normal fluctuations,

Vlachas, P. R., Arampatzis, G., Uhler, C., & Koumoutsakos, P. (2022). Multiscale simulations of complex
systems by learning their effective dynamics. Nature Machine Intelligence, 4(4), 359-366.

Nicoud, F., & Ducros, F. (1999). Subgrid-scale stress modelling based on the square of the velocity
gradient tensor. Flow, turbulence and Combustion, 62(3), 183-200.

Geneva, N., & Zabaras, N. (2020). Modeling the dynamics of PDE systems with physics-
constrained deep auto-regressive networks. Journal of Computational Physics, 403, 109056.

Ren, P, Rao, C., Liu, Y., Ma, Z., Wang, Q., Wang, J. X., & Sun, H. (2023). PhySR: Physics-

informed deep super-resolution for spatiotemporal data. Journal of Computational Physics,
492, 112438.

spanwise fluctuations,

Mean streamwise velocity

streamwise fluctuations,
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DUMMARYOTG-LED

oA generative framework for forecasting

complex systems and forecast their statistics.

o In G-LED:

- Bayesian ditfusion model is trained on high dimensional simulations and integrates

physical information in its prior knowledge.
- A flexible attention model that evolves the latent space dynamics.

- The generative model projects the latent space dynamics to high dimensional spaces.



LEARNING
ALGORITHMS




What 1s Intelligence ?

Intelli1gence 1s
the computational part
of the ability to achieve

goals 1n the world.

A system having a goal or not, 1s not a property of the system
itself. [t 1s In the relationship between the system and an
observer.

The system is most usefully understood/predicted/controlled
In terms of Its outcomes rather than its mechanisms.

http://jmc.stanford.edu/artificial-intelligence/what-is-ai/index.html



' Reinforcement Learning

' Learning: Behavioral changes due to
| Experiences (Action, Stimulus, Reward]

Reinforcement: stimulus-action pattern is
rewarded -> actor is conditioned to a behavior.

CREDIT: B.F. Skinner Foundation



o

Hand inserting a pigeon into missile
B.F. SKINNER FOUNDATION



http://psychclassics.yorku.ca/Breland/misbehavior.htm
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- maximising efficiency '
, No distance-based constraints specified  }

EARLY STAGES OF LEARNING



No distance constraints specified

* Follower opts to interact with wake-vortices ';
o Overall, 28% gain in average efficiency |

Tu

T Tu+ max(Pgef,0)



CONTROL

S. Verma, G. Novati, and P. Koumoutsakos, “Efficient collective swimming by harnessing vortices through deep reinforcement learning," P. Natl. Acad. Sci., p. 201800923, 2018.






ABF catching a circulating cancerous cell




Reinforcement Learning for Flow Control/Modeling

F(x,1) =0
e F(X, D)+ 7(5(X), a(s)) = 0
(X, 1)+ m(S(X), a(s))

RL: find a policy 7(s, a) for the actions of an agent that learns to
optimize their long-term consequences on the environment.



1t 1
l]k F( ul]k)

- from numerics




Multi-Agent Deep Reinforcement Learning

e Gos o

net oe o ’ R

~ local & global state information

Sgrid(t) = {Evisc(t)’ €tot(t)’ Ek, 1) ‘ k=1215}

- (] a0l )

k=1:5

: v, = (C,A)[ S]]

| e Common policy o
e Agents act locally on (C,) |

r(t) = — Y(E, Epyg)

. e Training on multiple Re,



Energy spectra for DNS (solid black line)
Standard Smagorinsky Model (purple), Dynamic Smagorinsky Model (green),

MARL policy 7'*, MARL policy z¥ and

Training set: Re;, € {65, 76, 88, 103, 120, 140, 163}

14



2D Turbulence: Prototype for atmospheric & oceanic flows (with Pedram Hassanzadeh-Rice U.)

Governing equations

2 forcing
e oy dw Oy dw
f(x, y) = Kf[COS<KfX> + cos(k y)] Now,y) = —— — ——

0w 1,
—+ No,y) — py,=—Vo+f—row ox dy Oy Ox
ot Re

f=0 B =20
Oceanic turbulent circulation Atmospheric and oceanic turbulent jets



Reynolds number: Re=20'000 . beta=0
LES: 32 x 32, 10x coarser in time (~10000x fewer DOFs than)
Data: spectrum from 20 DNS snapshots - Reward: enstrophy spectrum - States; Local Invariants

RL: learn Cg4(X,y,t) of Smagorinsky closure as a function of resolved flow (16 agents)

Tests: TKE spectrum, PDF of vorticity (weather), including tails (extreme weather)

LES RL-closure, can

capture
extreme events!




DNS WRLES WMLES

O(Re?%) O(Re'?) O(Re"™ 1

Chapman (1979), Choi & Moin (2011)

How many
grid points ?




on |
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(b) Zoomed 1n version of (a) for LLWM with
error iIn EQMW (crosses) numbers.

Error in time-averaged wall-shear stress obtained from
the VWM (empty) and LLWM (filled) for various
Reynolds numbers. Circles indicate the standard grid
with Ay = 0.05 and triangles indicate refined cases.



Ing turbutent boundary layer

- Experiments (Pope)

O RL model

80



CLOSING THOUGHTS

Nature Reviews Physics, 2024



the future...

CREDIT: THE ATLANTIC



Thank you !



