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ORIGINAL POD NN

First ever Deep NNs for Science (?) 



CREDIT: TED EdPLATO: The Allegory of the Cave

THE PURSUIT OF TRUTH





ShannonTuringNewtonLeibniz Frege Laplace WittgensteinBooleEuclid Descartes Russel HilbertLlull

If controversies were to arise,  
there would be no more need of disputation between  

two philosophers than between two accountants.  
For it would suffice to take their pencils in their hands, 

and say to each other:  

Calculemus—Let us calculate.



COMPUTING:	The	beginning…

1961



COMPUTERS
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2020
 ~1 Trillion X



COMPUTERS : A Disruptive Technology

http://www.testnewsonline.com/2012/10/02/deep-blue-beat-kasparov-because-of-bug/

MindGoogle) winning  Go  against Lee Sedol,  one of the world’s top  go players.March 11, 2016

         

SCIENCE FILE - Los Angeles Times 
9 March 2017 
No need for a poker face - 
Software program DeepStack  
beats the pros at Texas Hold ’Em 

http://www.testnewsonline.com/2012/10/02/deep-blue-beat-kasparov-because-of-bug/


AI and Fluid Mechanics - The Lighthill Report (1973)

Lighthill's position does not come as a surprise. He 
was, after all, a researcher in 
fluid dynamics and aeroacoustics, 
where it is easy to be misled by 
complicated differential 
equations involving 'continuous' 
variables and where nonexistent 
solutions arise so often.  

http://www.mathrix.org

Lighthill’s  main argument was that because one had to specify the rules in a computer to tell the robot how to 

behave in every possible scenario, every attempt to come up with a general purpose robot would quickly turn 

out to be an intractable problem, with a combinatorial explosion of possible solutions.
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How to solve hard problems? 
Use lots of training data. 
And a big deep neural network. 
And success is the only possible outcome. 

Ilya Sutskever (2015), 
co-founder of  OpenAI
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Forecasting Complex Systems 

Climate

Wildfires

Turbulence

‣ Chaotic dynamics
‣ Expensive to simulate and/or 

challenging to forecast

How to design  
fast, methods that  

capture/predict 
 system dynamics?  

➡Existing methods: 
Surrogate models , ROMs  
LES,RANS,DMD, ………

mm

km



A Case Study - Bubbly Flows 16



The CTC iChip - M. Toner Group (Harvard U.)



MACHINE LEARNING  

Capabilities for Pattern Recognition

SCIENTIFIC COMPUTING  

Expensive Models based on First Principles



Example: Dimensionality Reduction -> PCA as NN

retain	M	<	D	eigenvectors

x̄ = 1
N

N

∑
n=1

xn

S = 1
N

N

∑
n=1

(xn − x̄)(xn − x̄)T

Sui = λiui
W ⋅ x = z

WT ⋅ z = x̃

x

x̃

E = | | x̃ − x | |2

= | |WTW ⋅ x − x | |2

Find  by minimizing  W E



▸ learns a function with target values equal to the input 
▸ linear auto-encoder “equivalent” to  PCA/POD

Non-Linear PCA - Autoencoders

z = σ(W1 ⋅ x + b1)

x̃ = σ(W2 ⋅ z + b2)

x

x̃

Near Wall Turbulent Flow Modeling: The comparison
between Linear Neural Network and PCA

Wonmin Byeon

wbyeon@ethz.ch

Chair of Computational Science, ETH Zurich, Switzerland.

1 Introduction

This report reproduces the work of Milano and Koumoutsakos [1], especially linear neural network
and Principal Component Analysis (PCA).

2 Autoencoder

x
′

= fW,b(x) ≈ x

activation functions

σ(x) = x

σ(x) =
2

1 + e−2x
− 1

σ(x) = max(0, x)

σ(x) = ln(1 + ex)

σ′(x) = 1

σ′(x) = 1− f(x))2

σ′(x) = max(0, 1)

σ′(x) =
1

1 + e−x

3 Linear Neural Network

Principal components can be extracted using single-layer feed-forward neural networks with tied-

weights. Given data {xs}
S
s=1

∈ Rn,

z = W · xs,

x
′

s = WT · z,

where S is the number of samples, W ∈ Rc×n is the weight matrices of the network. n is the size
of input (the number of data points) and c is the number of neurons (the compression size). x is the
original flow field and x′ is the reconstructed flow field. z is the compressed field.

1
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activation function σ derivative

E = | | x̃ − x | |2
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Deep learning’s Big Bang moment.



SOLVING PROBLEMS

DATA

FI
R

ST
   

PR
IN

C
IP

LE
S

Engineering
Physics

Life Sciences
Medicine

Social Sciences
Finance

…Lawyers
Experts

…



How to solve hard problems? 
Use lots of training data. 
And a big deep neural network. 
And success is the only possible outcome. 

Ilya Sutskever (2015), 
co-founder of  OpenAI



SCIENTIFIC COMPUTING
Architectures

ARTIFICIAL	INTELLIGENCE+Exactness

Understanding               

Mathematics 

Statistics	

Goals

ALLOYS



✓Machine Learning: Success for Pattern Recognition

The Vexation of Patterns

➡ Patterns often present in Dynamical Systems  

๏ Are there Latent spaces of Dynamical Systems? 

➡Latent= Causal, Effective, Predictive,….. 

๏ Can Machine Learning help identify  them? 
IMAGE: De Chirico,  The Vexation of the Thinker



TIME  
an ML Frontier



Spatiotemporal Forecasting with ML models 
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Can ML models forecast  the dynamics  
of UNSEEN  data?



L̃ ≈ 8 L̃ ≈ 10 L̃ ≈ 15

NNs for Dynamical Systems

Integration with  up to  
 samples

dt = 0.02 T = 104

500.000

 

             

dui

dt
= − ν

ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2
Δx4 −

− ui+1 − 2ui + ui−1
Δx2 − u2

i+1 − u2
i−1

4Δx

L = 16, ν = 1
10 ⟹ L̃ ≈ 8

L = 16, ν = 1
16 ⟹ L̃ ≈ 10

L = 16, ν = 1
36 ⟹ L̃ ≈ 15

Kuramoto - Sivashinsky



PCA

PCA dynamics 

otrue
�k+1 otrue

�k+2 otrue
�1 otrue

0 opred
1 opred

2 opred
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4 opred
t
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h�1 h0 h1 h2 h3 h4 ht
LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM

opred
1 opred

2 opred
3 opred

4 opred
5 opred

t+1

SHORT-TERM 
HISTORY 
(TRAIN)

FULL dynamics

Forecasting using  LATENT Dynamics

SHORT-TERM HISTORY 
TRAIN

30

t = 0.0 t = 1.0 t = 2.0 t = 3.0t = 4.0t = 5.0

LATENT DYNAMICS:  
PCA, AUTO- ENCODERS,…. 

NEXT: 
LATENT DYNAMICS  

FOR DIFFUSION MODELS  



RNNs (and ML in general) FAIL to FORECAST(Sooner or Later) CHAOTIC SYSTEMS
reduced space high-dimensional space

L̃ ≈ 8

L̃ ≈ 10

31
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2018

2020



Learning  Effective Dynamics 



propagate 
(short times) 
micro scale

A

Equation-Free Framework - Yannis Kevrekidis 

initialise 
macro scale

B

z0 zt zt+Tμ
zt+Tμ+1 zt+Tμ+Tm

propagate  
(long times) 
macro scale

C

return to 
micro scale

D

⋯zt+⋯ zt+⋯

A

RESTRICTING /AVERAGING 
(micro  macro) 
e.g. PCA / DiffMaps / analytic

→ B
macro dynamics 

 propagator 
e.g. ODE / analytic

C
LIFTING 

 (macro  micro)→
D

Theodoropoulos, C.; Qian, Y.H. and Kevrekidis, I.G. (2000). Proc. Natl. Acad. Sci. 97: 9840-9845. 

Gear, C.W.; Kevrekidis, I.G. and Theodoropoulos, C. (2002). Computers and Chemical Engineering 26: 941-963. 

AND MANY MANY MORE



Learning Effective Dynamics

ENCODER ENCODER

RNN RNN RNNRNN

ENCODER

RNN

‘LIFT’
Decoding to high 

dimensional space

RNNRNN

ENCODERENCODERDECODER

RNN ⋯

Macro (latent) 
dynamics  Tm

Micro dynamics  
(fully resolved 
equations / simulations)

Twarm

Micro dynamics  Tμ

Macro (latent) 
dynamics  Tm

‘RESTRICT’
Encoding to latent 

space
Decoder:  
macro to 

micro map

Update the micro dynamics 
(and continue training of RNN)

Evolve latent dynamics 
with  RNN-LSTM

Update the macro dynamics 
using the RNN

  Twarm , Tμ ≪ Tm

PR Vlachas, G Arampatzis, C Uhler, P Koumoutsakos, 
Multiscale Simulations of Complex Systems 

by Learning their Effective Dynamics, 
Nature Machine Intelligence, (2022)

I.	Evolve		micro	dynamics	
II.	Project	to	Latent	Space	with	AEs	
III.	Train	RNN-LSTM
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64321

LED

PR Vlachas, G Arampatzis, C Uhler, P Koumoutsakos, 
Multiscale Simulations of Complex Systems 

by Learning their Effective Dynamics, 
Nature Machine Intelligence, (2022)



Cylinder at  - (LED )Re = 100 dz = 2

1 2 3 5 10 Latent
Ω = Tm/Tµ
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Tµ = 0.4, Tf = 20

• Micro solver: Finite Differences solver (CubimUP2D) employing 12 cores 
• State: velocity in x- and y- direction and pressure  

• LED with latent dimension of ,  

• LED captures long-term evolution of velocity and pressure fields (low NRMSE) 
• LED is up to two orders of magnitude faster than CubismUP2D 
• Recovers drag coefficient with error

st ∈ ℝ3×512×1024

dz = 2 Δt = 0.2

≈ 2 − 4 %

1 2 3 5 10 Latent
Ω = Tm/Tµ

0.0175

0.0200
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Ω = Tm/Tµ
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Tµ = 0.4, Tf = 20



h̃t−L+1

z̃t−L+1

ht−L+2

Z(h)

zt+1

ht+1htht−1

Z(h)

zt−1

Z(h) Z(h)

zt

R(z, h) R(z, h) R(z, h) R(z, h)

P ∼ Bern (p)

z̃t−1

Pt−1 = 0 Pt = 1

L = 1
L

t+1

∑
k=t−L+2

|zk − z̃k |2
2

z̃t+1z̃t−1

HYBRID LSTM - MSM 

·zt = {LSTMW(zt, zt−1, zt−2, …) if ptrain(zt) ≥ θ
MSMζ,c(zt) if ptrain(zt) < θ

PR Vlachas, W Byeon, Z Wan, T Sapsis, P 
Koumoutsakos, Data-driven forecasting of 
high-dimensional chaotic systems with long 

short-term memory networks, 
Proc. Roy. Soc. A , 2018 

PR Vlachas , J Pathak , BR Hunt , TP 
Sapsis , M Girvan, E Ott and P 
Koumoutsakos, 
Backpropagation algorithms and Reservoir 
Computing in Recurrent Neural 
Networks for the forecasting of complex 
spatiotemporal dynamics, 
 Journal of Neural Networks, 2020

RC-1000 LSTM-100REFERENCE

PR Vlachas, J Zavadlav, M Praprotnik, P Koumoutsakos, 
Accelerated Simulations of Molecular Systems through 
Learning of their Effective Dynamics, 
Journal of Chemical Theory & Computation, 2021

PR Vlachas, G Arampatzis, C Uhler, P 
Koumoutsakos, Multiscale Simulations of 

Complex Systems  by Learning their Effective 
Dynamics, Nature Machine Intelligence, 2022

PR Vlachas, P Koumoutsakos, 
Scheduled Autoregressive 
Backpropagation Through Time 
for Long-Term Forecasting, 
Neural Networks, 2024

ZY Wan, P Vlachas,  
P Koumoutsakos, T Sapsis, 

Data-assisted reduced-order 
modeling of extreme events in 

complex dynamical systems, 
PloS one, 2018

·ξt = F(ξt) + G̃(ξt, ξt−1, ξt−2, …)

z0 zt zt+Tμ
zt+Tμ+1 zt+Tμ+Tm

C

D

⋯zt+⋯ zt+⋯

A

B

C

D

1

A

ENCODER ENCODER ENCODER

ENCODER ENCODERDECODER

ENCODER
=

RNN RNN RNN RNN RNN RNNRNN

= RNN

DECODER
=

LED B



Adaptive LED interpretable  LED



Generative  LED

Nature Communications (accepted)



Generative AI : Probabilistic  Approach to Unsupervised Learning

Enormous progress in unsupervised learning using generative models

DALL-E (Open AI)Stable Diffusion

BREAKTHROUGH : pose learning as a problem of density estimation:
View	the	data	 as	samples	from	the	unknown	probability	distribution	 :	

-	calculate	an	estimate	 	of	 	,	and	
-	generate	new	data	via	sampling	of	 	.

{xi}n
i=1 μ

̂μ μ
̂μ



Score-Based	 Diffusion	 Models Song et al. arXiv:2011.13456 (2021); 
Hyvärinen JMLR 6 (2005); 
Vincent, Neural Comp. 23, 1661 (2011)

Given data from the target µ1: 

- Devolve them into Gaussian noise using e.g. an Ornstein-Ulhenbeck process; 
- Time-reverse the SDE to generate new samples from µ1 from samples from N(0,Id);

From Song’s paper 

Builds a path in distribution space between µ1 and N(0,Id);  
Reduces problem to the simulation-free regression of the score.



https://calvinyluo.com/2022/08/26/diffusion-tutorial.html

1. Input is steadily noised until it becomes identical to Gaussian noise

GUIDED Variational Diffusion Model 

Diffusion model “learns” to reverse this process with guidance  z0

p(x0 |x1; z0) p(xt−1 |xt; z0) p(xt |xt+1; z0) p(xT−1 |xT; z0)



GUIDANCE THROUGH PHYSICS

Generate data from a conditional distribution   through conditioning information  . p(x |z) z

Latent Dynamics as Guidance for Learning Effective Dynamics



45

Diffusion models for time Sequences  
How to incorporate them for forecasting  

Complex Physical Systems ?



Generative Learning of Effective Dynamics (G-LED)

‣ Instances of high dimensional data are down sampled to a lower 
dimensional manifold that is evolved through an auto-regressive 
attention mechanism.  

‣ In turn, Bayesian diffusion models, that map this low-dimensional 
manifold onto its corresponding  high-dimensional space, capture 
the statistics of the system dynamics. 
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z0 z1 z2 zn…Sequence net Sequence net Sequence net

Encoder

Decoder

s1 s2 sn… …… …Micro level

Macro level

A quick review of learning effective dynamics (LED)

s0 Micro level Initial Condition (Space) 

Time

Forecasting  

Spatiotemporal systems

Sequence net can be RNN, LSTM, Transformer And En/
Decoder can be variational, PCA or other



z0 z1 z2 zn…TRANSFORMER

Downsampler

s1 v2 vn…

Physics 
Information 

…… …Micro level

Macro level

Generative Learning for Forecasting the Dynamics of Complex Systems

v0 Micro level

FORECASTING 
Diffusion Models

pw(x0 |x1; z) pw(xt−1 |xt; z) pw(xt |xt+1; z) pw(xT−1 |xT; z)

x0 = (v1, v2, . . . , vn)

Guided diffusion model 

z = (z1, z2, . . . , zn)

TRANSFORMER TRANSFORMER
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How to train the Diffusion model ?

. . . . . .

(Forward process: adding noise to the training data)

The training is supervised, , 


A DNN is trained to denoise ,


DNN is a 3-D UNet, and  the latent state

DNNθ : (ϵi, z, i) ↦ s

s ≈ DNNθ(ϵi, z, i)

z

ϵi ∼ qi(ϵi |s) := 𝒩(s, σ2
i I)ϵ1

ϵ2
ϵ3
ϵNϵ

And  is larget enoughσNϵ
s . t . ϵNϵ

∼ 𝒩(s, σNϵ
I) ≈ 𝒩(0,σNϵ

I)

(Train DNN to remove noise added to the training data)

. . . . . .
ϵ1
ϵ2
ϵ3
ϵNϵ

s

s

ρinv := 1
ρ

, σi = (σ
ρinv
max + Nϵ − i

Nϵ − 1 (σ
ρinv
min − σ

ρinv
max))

ρ

for i = 1,2,… . Nϵ,

z
z
z
z
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Decoding using the Diffusion Model:

(Reverse process)
Firstly, sample a white noise as a starting point: 


Then, from  to 1, apply 

ϵ′ Nϵ
∼ 𝒩(0,σNϵ

I)

Nϵ ϵ′ i ∼ p(ϵ′ i |ϵ′ i+1, z, i) := 𝒩( σ2
i+1 − σ2

i

σ2
i+1

DNN(ϵ′ i+1, z, i)
denoised s′ given z

+ σ2
i

σ2
i+1

ϵ′ i+1,
(σ2

i+1 − σ2
i )σ2

i

σ2
i+1

I)

. . . . . .DNN DNN DNN DNN DNN DNN

During predictions,  is a new white noise and the sampling is 
stochastically achieved as 

 

Since the reverse diffusion process is trained on , the 
decoding process has a low variance compared to diffusion 
models in computer vision.

ϵ′ Nϵ

ϵ′ i ∼ p(ϵ′ i |ϵ′ i+1, z, i) := 𝒩( σ2
i+1 − σ2

i

σ2
i+1

DNN(ϵ′ i+1, z, i)
denoised s′ given z

+ σ2
i

σ2
i+1

ϵ′ i+1,
(σ2

i+1 − σ2
i )σ2

i

σ2
i+1

I)
z

ϵ′ Nϵ
ϵ′ Nϵ−1ϵ′ Nϵ−2s′ ϵ′ 1 ϵ′ 2

zzzzzz
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Incorporating physical information

1: Formulate physical information as a residual . 
 In case we have some equation with governing dynamics 

 then we can also formulated a residual such as 
virtually observed with  *

R(st)

R̂(st) = 0
R̂(st) = 0

p(ϵi | R̂ = 0,z) = p(R̂ = 0 |z, ϵi)p(ϵi |z)
C

2: Use Bayes Law to condition the current state  
of the diffusion process on the residual. An estimate for   
is obtained based on  using the trained NN. 

st
zt

3: Use the modified gradient in the  reverse diffusion 
process

= ∇ϵlog p(R̂ = 0 |ϵi, z) + ∇ϵlog p(ϵi |z)

New term due to physical information

What about known physical constraints (or partial information) ?
Incorporate as (virtual) observables via Gradient Guidance !

* S.Kaltenbach and P.-S. Koutsourelakis: Incorporating physical constraints in a deep probabilistic machine learning framework 
for coarse-graining dynamical systems, J. Comp. Physics, 2020 
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z0 z1 z2 zn…Transformer Transformer  Transformer  

Downsampler

Spatiotemporal Bayesian diffusion model

s1 s2 sn…

Physics is incorporated  
as virtual observables  
via gradient guidance

…… …Micro level

Macro level

Generative Learning for Forecasting the Dynamics of Complex Systems (G-LED)

s0 Micro level

Spatiotemporal systems

Initial Condition (space) 

in time
Forecasting
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G-LED Results: 1-D Kuramoto–Sivashinsky equation

Numerical simulation: Manifold

G-LED: Manifold

test trajectories with new initial condition. 
 The vertical direction depicts the time t from 0 to 96s where the first 16s used an initial conditions for warm-up. 21K 

trajectories are used for training and 19K for testing. 

x

Time

∂u
∂t

= − ν
∂4u
∂t4 − ∂2u

∂x2 − u
∂u
∂x

,

Ω = [0,22] with u(0,t) = u(L, t) and ν = 1

G-LED Numerical  
simulation

x

Time

G-LED Numerical  
simulation

x

Time

G-LED Numerical  
simulation
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G-LED Results: Outperform different diffusion modeling methods

Video-Diff: Video diffusion models. Advances in 
Neural Information Processing Systems, 35, 
8633-8646.

Mean stress of streamwise-wallnormal velocity 

x=0 x=8x=4

Guidance-Diff: Bayesian conditional diffusion 
models for versatile spatiotemporal turbulence 
generation. Computer Methods in Applied 
Mechanics and Engineering, 427, 117023.G-LED

x=4x=0 x=8
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KEY ISSUES : 

1. Diffusion models are associated with large variations in the generated samples. 
• In G-LED sequence of snapshots are correlated by the underlying physical process via 

macro sequences.  
• Condition the denoising process on the latent states. 

2. G-LED decodes  multiple consecutive macro states together as a batch (similar to Sora) to 
enhance temporal coherence and increase temporal smoothness in the results.

Forward and reverse processes in G-LED: Summary
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G-LED LES

Streamwise velocity from t=0s to 1.25s

Wallnormal velocity from t=0s to 1.25s

G-LED Results: 2-D flow over backward facing step at Re = 5000

Geometry of flow domain (solid lines), 
area of interest (shadowed zone)

The spatial domain is discretized with a 512x512 uniform grid the snapshots are subsampled with a larger time step Dt = 0.05. 8000 snapshots are used for training, $500$ snapshots are for validation and 
1500 snapshots are for the testing.
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G-LED Results: Outperform different diffusion modeling methods

Video-Diffusion: Video diffusion models. 
Advances in Neural Information Processing 
Systems, 35, 8633-8646.

Mean stress of streamwise-wallnormal velocity 

x=0
x=4x=8 x=0 x=8x=4

Guidance-Diffusion: Bayesian conditional diffusion 
models for versatile spatiotemporal turbulence 
generation. Computer Methods in Applied 
Mechanics and Engineering, 427, 117023.

G-LED



Reτ = 395

G-LED z=8x32x8

LES = 40x50x30 

Turbulent channel flow Reτ = 395 Mean streamwise velocity 

streamwise fluctuations,spanwise fluctuations,wall normal fluctuations,

Vlachas, P. R., Arampatzis, G., Uhler, C., & Koumoutsakos, P. (2022). Multiscale simulations of complex 
systems by learning their effective dynamics. Nature Machine Intelligence, 4(4), 359-366.LED

LES Nicoud, F., & Ducros, F. (1999). Subgrid-scale stress modelling based on the square of the velocity 
gradient tensor. Flow, turbulence and Combustion, 62(3), 183-200.

Geneva, N., & Zabaras, N. (2020). Modeling the dynamics of PDE systems with physics-
constrained deep auto-regressive networks. Journal of Computational Physics, 403, 109056.AR-CNN

CNN-SR Ren, P., Rao, C., Liu, Y., Ma, Z., Wang, Q., Wang, J. X., & Sun, H. (2023). PhySR: Physics-
informed deep super-resolution for spatiotemporal data. Journal of Computational Physics, 
492, 112438.



•A  (surprisingly powerful) generative framework for forecasting 

complex systems and forecast their statistics. 

• In G-LED: 

- Bayesian diffusion model is trained on high dimensional simulations and integrates 

physical information in its prior knowledge.  

- A flexible  attention model that evolves the latent space dynamics.  

- The generative model projects the latent space  dynamics to high dimensional spaces.

SUMMARY of G-LED 59



LEARNING TO SOLVE PROBLEMS 
ALGORITHMS



http://jmc.stanford.edu/artificial-intelligence/what-is-ai/index.html

Intelligence	is	
the	computational	part	

of	the	ability	to	achieve	
goals	in	the	world.

What	is	Intelligence	?

John McCarthy

A system having a goal or not, is not a property of the system 
itself. It is in the relationship between the system and an 
observer. 

The system is most usefully understood/predicted/controlled 
in terms of its outcomes rather than its mechanisms. 



Learning: Behavioral changes due to 
Experiences (Action, Stimulus, Reward)

Reinforcement:  stimulus-action pattern is 
rewarded -> actor is conditioned to a behavior.

Reinforcement  Learning

CREDIT: B.F. Skinner Foundation



Hand inserting a pigeon into missile
B.F. SKINNER FOUNDATION

https://www3.uca.edu/iqzoo/History/bf_skinner.htm

In the early 1940s, as part if the war effort, the 
Brelands assisted Skinner in his famous Project Pigeon, 
in which they taught pigeons how to guide bombs. They 
did this work atop a General Mills grain elevator in 
Minneapolis, pictured below.  Both Keller and Marian 
left the University of Minnesota without doctorates, 
planning to apply the powerful procedures they had 
learned under Skinner to animal behavior. In 1961, 
when they published their most famous work, they 
playfully entitled it, The Misbehavior of Organisms.

http://psychclassics.yorku.ca/Breland/misbehavior.htm


REAL 
WORLD 

AGENT 
STATE

STATE

πw

AGENT 
MODEL 
WORLD

Observe

Act

RewardJ(w) = 𝔼
at ∼ πw(a |st)
st+1 ∼ 𝒟(s|at,st)

[∑
t

rt]





GOAL II : maximising efficiency 
No distance-based constraints specified EARLY STAGES OF LEARNING 



R⌘ =
Tu

Tu+max(Pdef , 0)

• Follower opts to interact with wake-vortices 
• Overall, 28% gain in average efficiency

GOAL II : MAX  EFFICIENCY

No distance constraints specified



CONTROL

S. Verma, G. Novati, and P. Koumoutsakos, “Efficient collective swimming by harnessing vortices through deep reinforcement learning," P. Natl. Acad. Sci., p. 201800923, 2018. 





ABF catching a circulating cancerous cell



Reinforcement Learning for Flow Control/Modeling

F(x, t) = 0
̂F(x, t)+π(s(x), a(s)) = 0

RL:  find a policy  for the actions of an agent that learns to 
optimize their long-term consequences on the environment.

π(s, a)

Governing Equation

Model 
Control



un+1
ijk = F(un

ijk)

 : from numericsF

 : through RLF

+



Multi-Agent Deep Reinforcement Learning

• Common policy 
• Agents act locally on ( ) 
• Training on multiple 

Cs
Reλ

1
1

1
1

1
1

s (x(i), t) = {λ∇u
k (x(i), t)

k=1:5
, λΔu

k (x(i), t)
k=1:6}

sgrid(t) = {ϵvisc(t), ϵtot(t), E(k, t)
k=1:15}

1 1 1 1 1 1 1 11

r(t) = − 𝒟(E, EDNS)

Cs (x(i), t) = a (x(i), t) ∼ π𝚠 ( ⋅ | s (x(i), t))
agent i

x(i)

local & global state information

νt = (CsΔ)2 | |S | |
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MARL policy , MARL policy   and MARL policy  trained exclusively from data for Re = 111 πLL πG πLL

Energy spectra for DNS (solid black line)

Standard  Smagorinsky Model  (purple), Dynamic Smagorinsky Model (green), 

Training set: Reλ ∈ {65, 76, 88, 103, 120, 140, 163}



2D Turbulence: Prototype for atmospheric & oceanic flows (with Pedram Hassanzadeh-Rice U.)
Governing equations 

 
 

∇2𝜓 = 𝜔
∂ω
∂t

+ N(ω, ψ) − βψx = 1
Re

∇2ω + f − rω

𝛽 = 0 𝛽 = 20
Oceanic turbulent circulation Atmospheric and oceanic turbulent jets

N(ω, ψ) = ∂ψ
∂x

∂ω
∂y

− ∂ψ
∂y

∂ω
∂x

forcing  

 𝑓(𝑥, 𝑦) = 𝜅𝑓[cos(𝜅𝑓𝑥) + cos(𝜅𝑓𝑦)]



○ Reynolds number: Re=20’000 , beta = 0 

○ LES: 32 x 32, 10x coarser in time (~10000x fewer DOFs than) 

○ Data: spectrum from 20 DNS snapshots - Reward: enstrophy spectrum - States; Local Invariants 

○ RL: learn Cs(x,y,t) of Smagorinsky closure as a function of resolved flow (16 agents) 

○ Tests: TKE spectrum, PDF of vorticity (weather), including tails (extreme weather)

LES RL-closure, can 
capture 

extreme events!



“Type a quote here.” 

<latexit sha1_base64="LQqkVUWxO50ZDyipM9EaqmQlQi4="></latexit>

Chapman (1979), Choi & Moin (2011)

WRLES WMLES

O(Re2.6) O(Re1.9) O(Re0−1)

DNS

How many  
grid points ?

Turbulent Flows:  Re ≥ 107



on 1

WALL  
TURBULENCE

 on  
an airplane wing

1mm3



Error in time-averaged wall-shear stress obtained from 
the VWM (empty) and LLWM (filled) for various 
Reynolds numbers. Circles indicate the standard grid 
with ∆y = 0.05 and triangles indicate refined cases. 

TRAIN PREDICT

(b) Zoomed in version of (a) for LLWM with 
error in EQMW (crosses) numbers. 



TESTING ΙΙ: Evolving turbulent boundary layer

Experiments (Pope)

RL model

80



CLOSING THOUGHTS

Nature Reviews Physics, 2024



the future… 

CREDIT: THE ATLANTIC



Thank you !


