

Neural Abstractive Summarization: Methods and Applications

Grigorios Tsoumakas

Medoid Al

Agenda

Setting the Scene

Dealing with Long Documents

Bayesian Active Summarization

Controlling the Output's Topic

Healthcare and Finance Apps

Setting the Scene

Automated Summarization vs Information Overload

Reduce reading time

Reduce cost and bias of human summarizers

Improve downstream machine processing tasks 🖒 😪 😮 94 🗲

🔘 Meta Al

What people are saying

The closing of Bob's Stores in Connecticut sparks various reactions. Some commenters attribute the closure to the store "going woke" or having poor selection, while others point to the rise of online shopping and large retailers like Amazon and Walmart as the main cause.

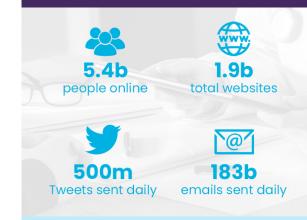
Home > Blog >

Auto-generated Summaries in Google Docs

March 23, 2022

Posted by Mohammad Saleh, Software Engineer, Google Research, Brain Team and Anjuli Kannan, Software Engineer, Google Docs

THE 2022 ONLINE **BIG DATA FACTS**



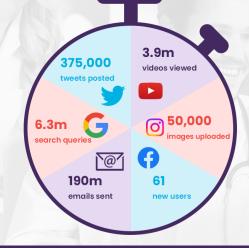
HOW MUCH DATA IS OUT THERE?

לא

...

World data is predicted to reach **175ZB** by 2025. That much data would take one pserson **1.8 billion years** to download at current internet speeds!

WHAT HAPPENS ONLINE EVERY MINUTE?



Source: https://healthit.com.au

Extractive & Abstractive Summarization

EXTRACTIVE SUMMARY

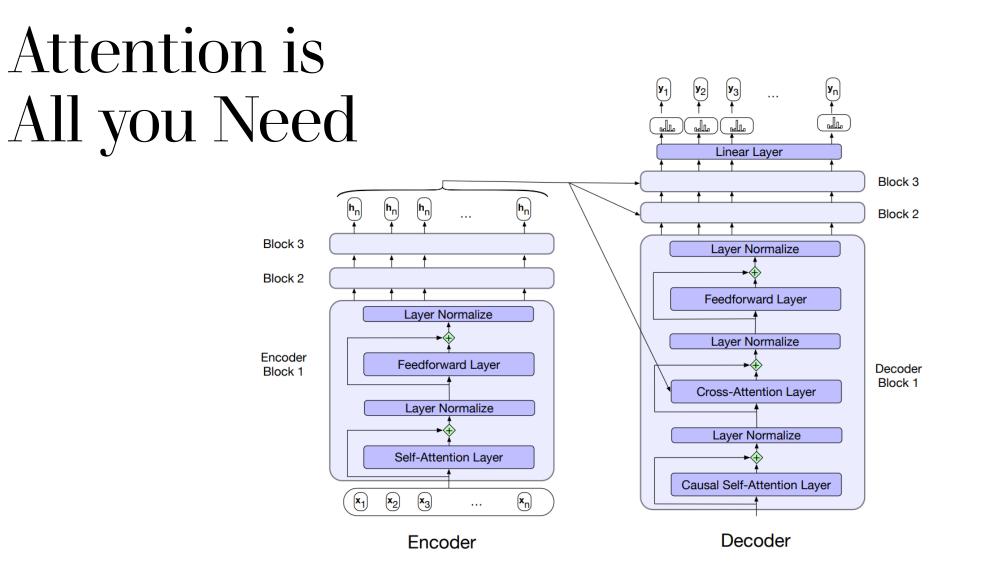
During the United Nations General Assembly, Ukraine and climate change were high on the agenda

DOCUMENT

During the 77th session of the United Nations General Assembly, Russia's invasion of Ukraine and climate change were high on the agenda amid soaring prices for energy and food. DW, 21/09/2022

ABSTRACTIVE SUMMARY

Russia and climate change dominate UN General Assembly



Source: "Speech and Language Processing (3rd ed. draft)"

Pretrained Models: PEGASUS

Architecture

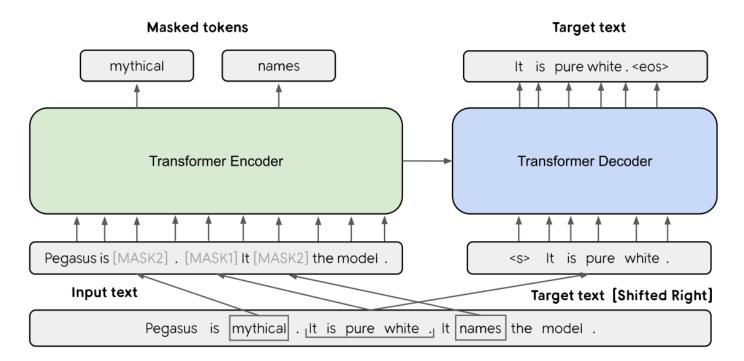
 Large: 16 layers, 1024 hidden layer size, 4096 feed-forward layer, 568M params

Data

- HugeNews: I.5B articles (3.8TB) from news and news-like websites
- C4: 350M Web-pages (750GB)

Objective

 Gap Sentence Generation: masking 30% of sentences and concatenating them as summary



Source: "PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization"

Pretrained Models: BART

Architecture

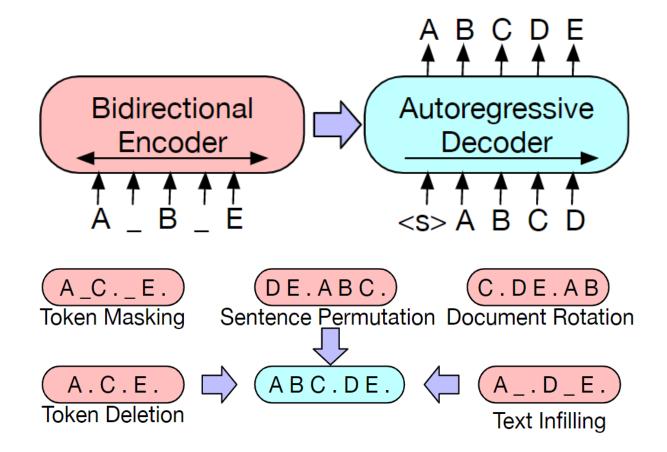
 Large: 12 layers, 1024 hidden layer size, 4096 feed-forward layer, 406M params

Data

 BookCorpus plus English Wikipedia (16Gb), CC-News (76Gb),
OpenWebText (38Gb), Stories (31Gb)

Objective

Input reconstruction



Dealing with Long Documents

The Challenge of Long Documents

Higher computational complexity

- Self-attention computation in transformers has $O(n^2)$ complexity with respect to n input tokens
- Typical capacity of PEGASUS and BART is 1024 tokens

Higher levels of noise

• Only a small fraction of a long doc is key to its narrative

Diverse key information in the summaries

• Difficult to capture, compared to single point of information in short documents

	Input	Output
CNN	656	43
Daily Mail	693	52
PubMed	3,016	203
arXiv	4,938	220

Solutions for Long Documents

Truncation

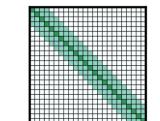
Chunking

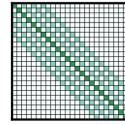
Sparse attention

- BigBird (Google)
- Longformer (Allen Al)

FlashAttention

							-								-					-	H
F			-	H			-	H	H			H		H		H	H			H	H
H	-					-	-				-	-							-	-	н
H	H	H		H	H	H	-	H	H	H	H	H	H	H		H	-	H	H	H	H
H	-					H	-	H	H		H	H	H	H		H		H	H	-	H
H	H			H			H		H		F	H	H	H		H	H	H	H	H	H
																				-	H
	-																			-	H
-	-					F	-		H			H		=		H	=		F	F	H
	-			H			-					F				H				F	H
												F								F	
				F					F												
				F					F												F
-									F											F	F
												F								F	





								Ц		⊢				Ц									
									_	⊢								Ц	L		L	_	_
н			-	⊢			1	Ц	_	1							-					_	_
н			-	⊢		_	-		-	-													
H	_	н		-	-	_	-		-	⊢	-			-		_	-	-	-	-	-	_	_
н	_	н	-	-	-	_		-	-	⊢	-		-	H		-	-	н	-	-	-	_	_
			-	-				Ľ											-				-
н	_	н	-	⊢	-		-			-			-	H		-	H	н	-	-	⊢	-	-
н	_	H	-	-	-	-			-	-	-			H		-	-	H	-	-	-	-	-
H		-	_	-	-		-			⊢							-		_	-	-	_	_
	_	-	_	-	-		-	H		-		_					-	-	_	-	-	_	_
н	_	-	-	-	-	_	-	-	-	-			_	-				-	-	-	-	_	_
н	_	н	-	-	-	-	-	-	-	-			_		-	-	-	-	-	-	-	_	_
н	-		-	-	-				-	-			-	H	_	-			-				
Н		H	-	-	H	-	-	H	-	-	H	H		H			H	H		H	-	-	-
н		H	-	-		-	-	H	-	-	H	H	-	H							-	-	-
H		H	-	-		-	-	H	-	-	H	H	-	H			H						-
н	-	н	-	⊢	⊢	-	-	н	-	⊢	H	Н	-	н			H	H	_	-	⊢	-	-
н	-	Н	-	⊢	-	-	H	Н	-	⊢	H	Н	-	н		-		H	-			-	-
Н		Н	-	-	H	-	-	Н	-	-	H	H	-	Н	H	-	H	H		H	-		
н	_	H	-	-	-	-	-	н	-	-	-	H	-	H		-	H	Н	-		-	_	_
																							F.

(a) Full n^2 attention

(b) Sliding window attention

(c) Dilated sliding window

(d) Global+sliding window

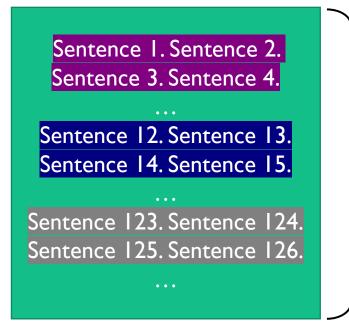
Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The Long-Document Transformer, https://doi.org/10.48550/arxiv.2004.05150

DANCER (Divide-ANd-ConquER)

Sentence I. Sentence 2. Sentence 3. Sentence 4. ... Sentence 12. Sentence 13. Sentence 14. Sentence 15. ... Sentence 123. Sentence 124. Sentence 125. Sentence 126. ...

Sentence 1. Sentence 2. Sentence 3. Sentence 4. Sentence 5. ...

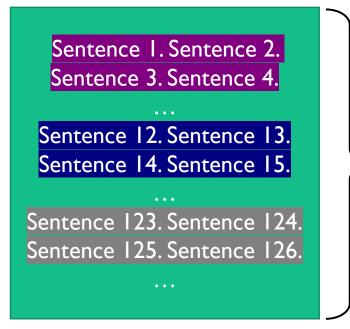
DANCER (Divide-ANd-ConquER)



Compute ROUGE-L precision $P_{LCS}(s^{(y)}, s^{(x)}) = \frac{LCS(s^{(y)}, s^{(x)})}{\operatorname{length}(s^{(x)})}$ between each summary sentence $s^{(y)}$ with each document sentence $s^{(x)}$

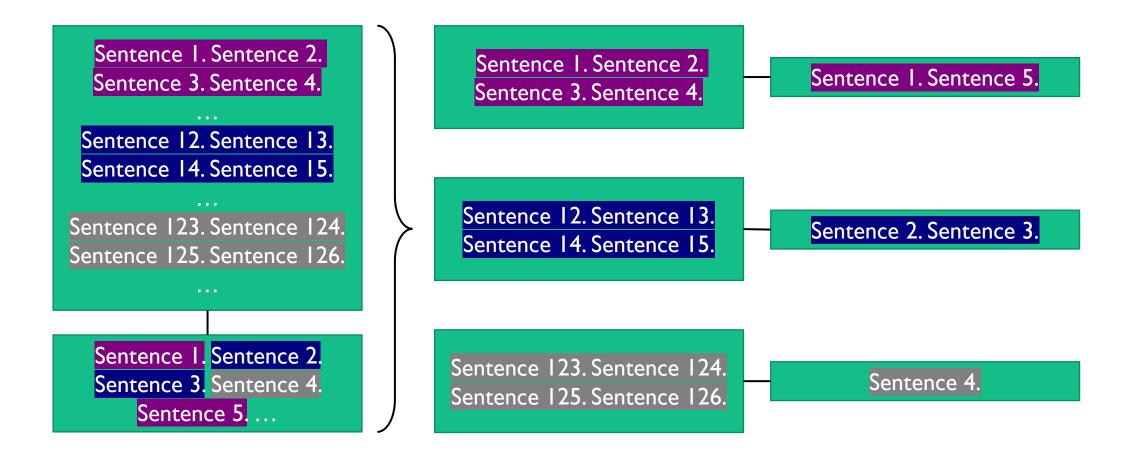
Sentence 1. Sentence 2. Sentence 3. Sentence 4. Sentence 5. ...

DANCER (Divide-ANd-ConquER)



Compute ROUGE-L precision $P_{LCS}(s^{(y)}, s^{(x)}) = \frac{LCS(s^{(y)}, s^{(x)})}{\text{length}(s^{(x)})}$ between each summary sentence $s^{(y)}$ with each document sentence $s^{(x)}$

DANCER (Divide-ANd-ConquER)

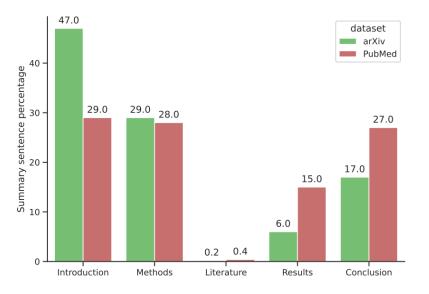


Section Selection

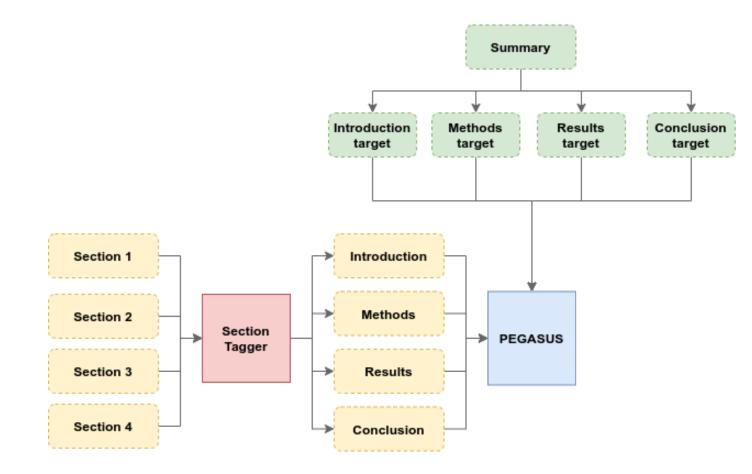
We filter uninformative sections

- E.g., front-end sections vs financial statements in financial reports
- E.g., introduction, conclusions vs related work, background in papers

Section	Keywords
Introduction	Introduction, case
Literature	Background, literature, related
Methods	Method(s), techniques, methodology
Results	Result(s), experimental, experiment(s)
Conclusions	Conclusion(s), concluding, discussion, limitations



Summarizing Academic Papers



Results

arXiv						
	R-I	R-2	R-L			
PEGASUS	44.21	16.95	38.83			
DANCER	45.01	17.60	40.56			
BigBird	46.63	19.02	41.77			

- Loss of dependencies between the different sections
- No architectural change requirements, can do inference in parallel, can deal with large outputs too

Bayesian Active Summarization

The Problem

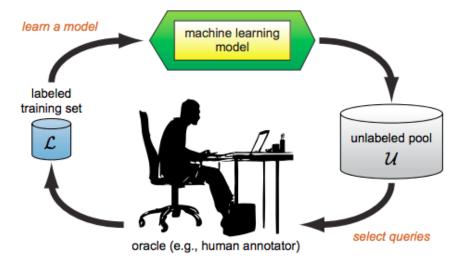
Deep learning models are data hungry

Collecting high quality training data is costly

• Especially if domain expertise is required, as in the financial, legal and health domains

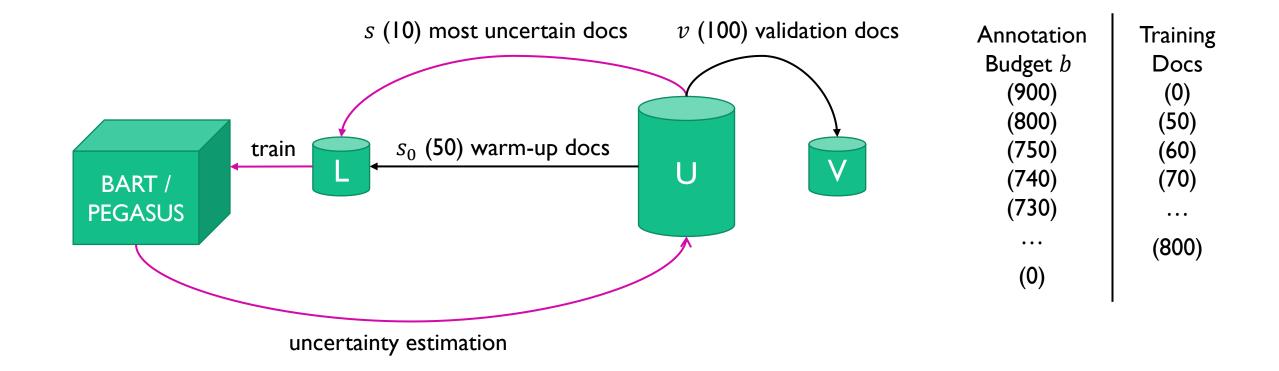
Active learning can help make the most out of a finite budget

Almost no work on active summarization



The pool-based active learning cycle. Source: Settles, B. (2012). Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 6(1), 1–114.

BAS (Bayesian Active Summarization)

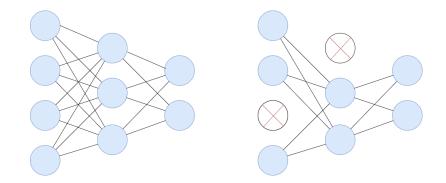


Gidiotis, A., & Tsoumakas, G. (2022). Should We Trust This Summary? Bayesian Abstractive Summarization to The Rescue. In Findings of the Association for Computational Linguistics: ACL 2022, pages 4119–4131, Dublin, Ireland.

Uncertainty Estimation

Monte Carlo Dropout (Gal & Ghahramani, 16)

- Train model with dropout
- Multiple stochastic inference passes with dropout turned on (different masks)

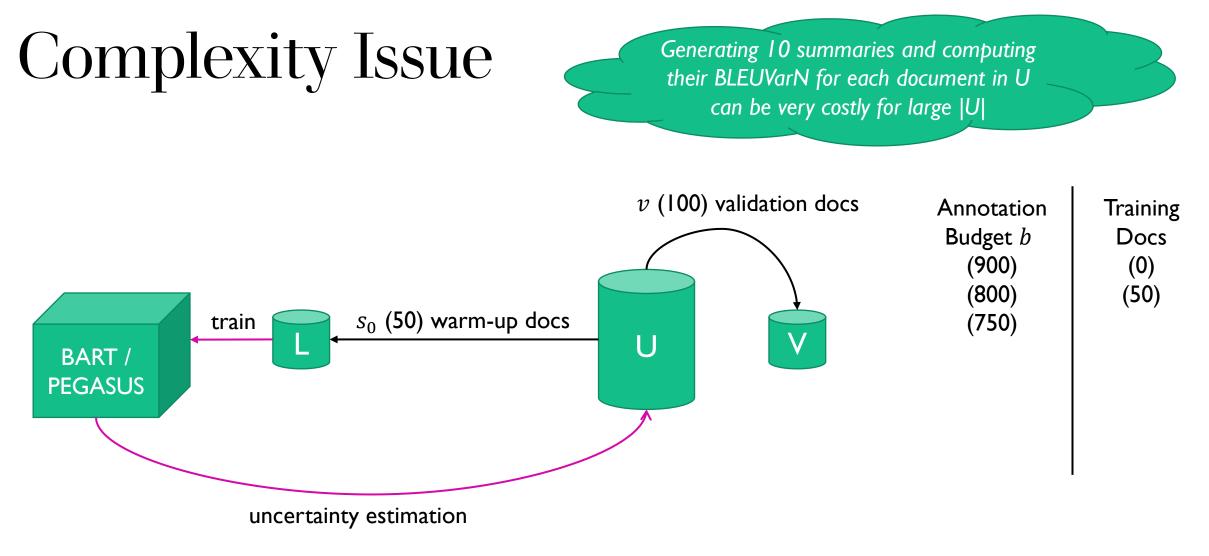


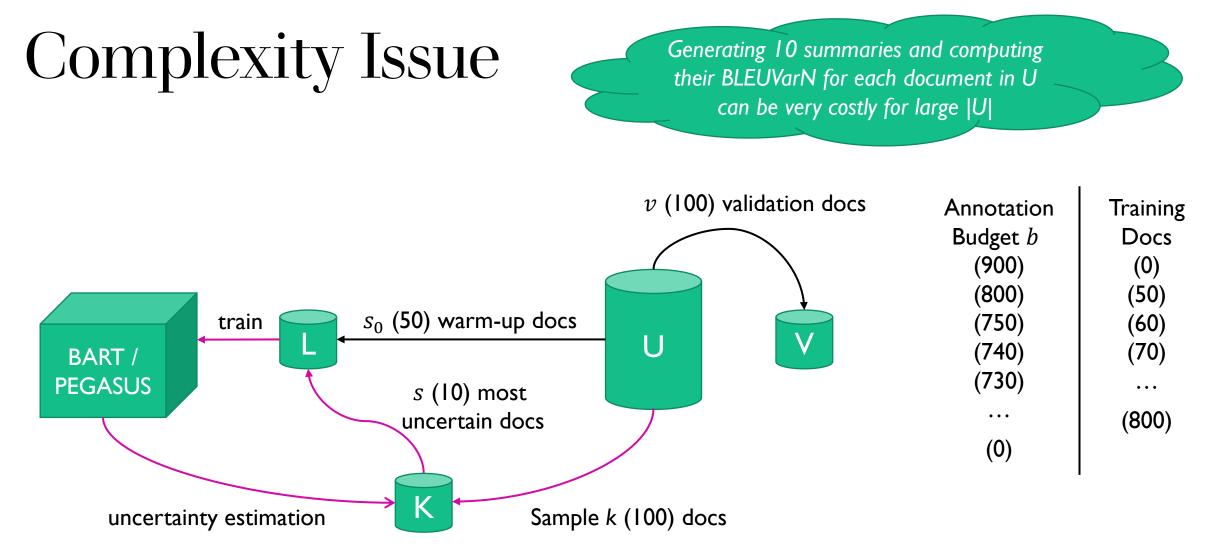
Michał Oleszak. Monte Carlo Dropout. https://bit.ly/3cKiPGL

Following related work in machine translation (Xiao, Gomez & Gal, 20)

• Sample n (10) stochastic summaries for a given input

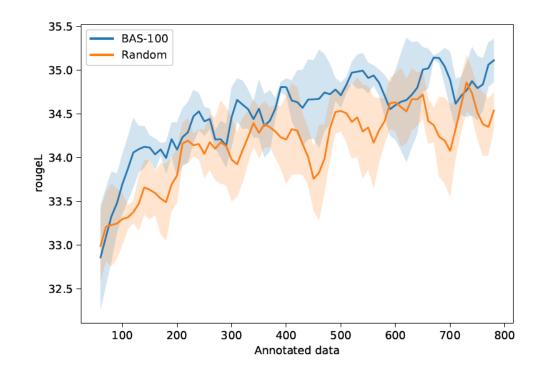
• Compute BLEUVarN =
$$\frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j\neq i}^{n} \left(1 - \text{BLEU}(y_i, y_j)\right)^2$$





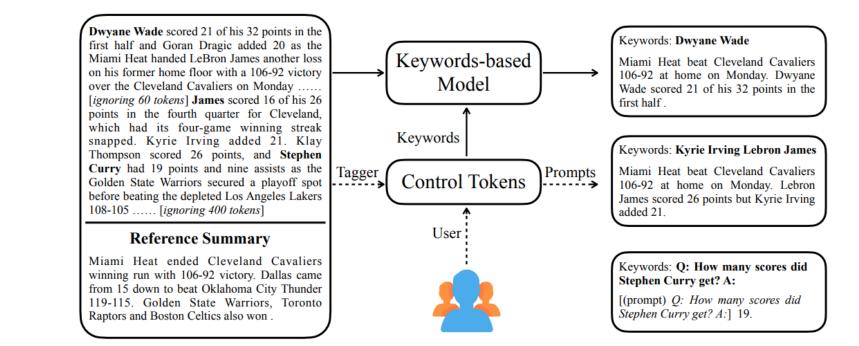
Results on XSum

	R-I	R-2	R-L
PEGASUS pre-trained	17.84	2.65	12.71
b=150 Random	42.06	19.14	33.77
b=150 BAS-100	42.39	19.45	34.20
b=150 BAS-200	42.55	19.59	34.31
b=800 Random	43.25	20.07	35.02
b=800 BAS-100	43.40	20.32	35.26
b=800 BAS-200	43.38	20.24	35.11
PEGASUS full	44.90	23.33	37.74



Controlling the Output's Topic

Controllable Summarization



CTRLsum: Towards Generic Controllable Text Summarization, Junxian He, Wojciech Kryściński, Bryan McCann, Nazneen Rajani, Caiming Xiong, arXiv 2020

Named entities

Length

Style Topic

Topic Control

One-hot encoded topic vectors concatenated to the embedding of each token

 Krishna & Srinivasan. Generating Topic-Oriented Summaries Using Neural Attention, NAACL 2018

Incorporate topical information into the attention mechanism of encoder-decoder RNNs

 Bahrainian, Zerveas, Crestani, and Eickhoff. 2021. CATS: Customizable Abstractive Topic-based Summarization. ACM Trans. Inf. Syst. 40, 1, Article 5 (January 2022), 24 pages Proposed for RNNs Require architectural changes to models

 Not clear how to apply to Transformers

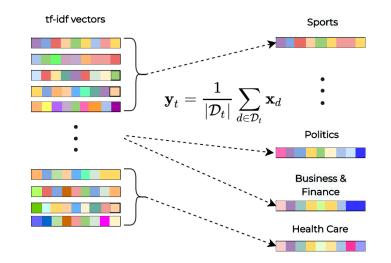
Evaluation is based on traditional ROUGE metrics

Topic Representation

We assume a set of topics T, and a set of documents D_t for each topic $t \in T$ For simplicity, we use a tf-idf representation, x_d , for each document $d \in D_t$, of each topic $t \in T$, with IDF computed across $\bigcup_{t \in T} D_t$

The representation for a topic is computed as the average representation of its documents

•
$$\mathbf{y}_t = \frac{1}{|D_t|} \sum_{d \in D_t} \mathbf{x}_d$$



Topic-Aware Evaluation

Given

- The tf-idf topic representation $y_t = \frac{1}{|D_t|} \sum_{d \in D_t} x_d$
- A representation of the summary y_s using the same tf-idf model

Summarization Topic Affinity Score (STAS)

• STAS
$$(\boldsymbol{y}_{s}, \boldsymbol{y}_{t}) = \frac{\cos(\boldsymbol{y}_{s}, \boldsymbol{y}_{t})}{\max_{z \in T} \{\cos(\boldsymbol{y}_{s}, \boldsymbol{y}_{z})\}}$$

Topic Control for Transformers

Topic embeddings (inspired from Krish. & Srin.)

• Trainable topic embeddings that are summed with the token embeddings and positional encodings

Prepending (inspired from CTRLsum)

• Add the gold/desired topic at the beginning of the input during training/inference

Tagging

• Tag with a special token the words of the topic representation with the top N tf-idf scores

 $\mathbf{z}_i = WE(w_i) + PE(i) + TE$

Politics From Michael Jordan to LeBron James, how the NBA became a powerful political organization. Four decades ago, back when the NBA televised its championship games at midnight ...

From Michael Jordan to LeBron James, how the NBA became a powerful **[TAG]**political **[TAG]**organization. Four decades ago, back when the NBA televised its championship games at midnight ...

Topic Control for Transformers

Topic embeddings (inspired from Krish. & Srin.)

• Trainable topic embeddings that are summed with the token embeddings and positional encodings

Prepending (inspired from CTRLsum)

• Add the gold/desired topic at the beginning of the input during training/inference

Tagging

• Tag with a special token the words of the topic representation with the top N tf-idf scores

 $\mathbf{z}_i = WE(w_i) + PE(i) + TE$

Sports From Michael Jordan to LeBron James, how the NBA became a powerful political organization. Four decades ago, back when the NBA televised its championship games at midnight ...

From Michael Jordan to LeBron James, how the **[TAG]**NBA became a powerful political organization. Four decades ago, back when the **[TAG]**NBA televised its **[TAG]**championship **[TAG]**games at midnight ...

Topic-Oriented Summarization Data

Not one but two very familiar faces will be ranged against Andy Murray on the support benches as he revisits one of the most highly charged matches of his career. Britain struck oil in the Falklands yesterday, a discovery likely to escalate already heightened tensions with Argentina over the ownership of the islands. Tomas Berdych is his opponent in the semi-final of the Miami Open, the man Murray met — and eventually beat — at the same stage of the Australian Open in January. After nine months of exploratory drilling, a group of British companies found oil and gas in a remote field north of the islands.

Energy & Environment: British companies found oil and gas in a remote field north of the islands. Comes days after minister warned of 'very live threat' from Argentina.

Sports: British No I faces Tomas Berdych in the Miami Open semi-finals. Former coach Dani Vallverdu and now fitness trainer Jez Green left Andy Murray's team to join up with the Czech. Murray defeated Berdych in a controversial Australian Open semi-final.

Krishna & Srinivasan. Generating Topic-Oriented Summaries Using Neural Attention, NAACL 2018

Human Evaluation of STAS

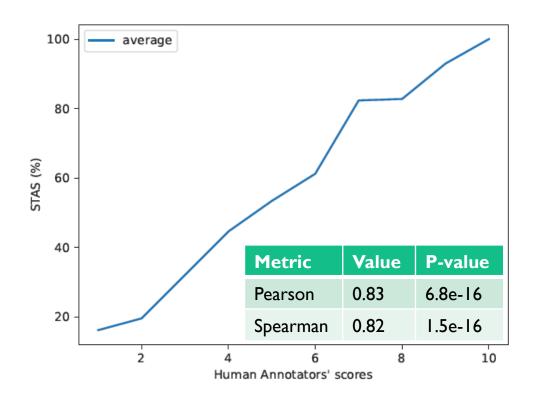
62 volunteers

• Graduate and undergraduate students

How relevant is this summary to this topic in a scale from 1 to 10?

- Randomly show them one of 10 summaries
- Randomly show them the correct or a different topic

Compute STAS for summary and topic

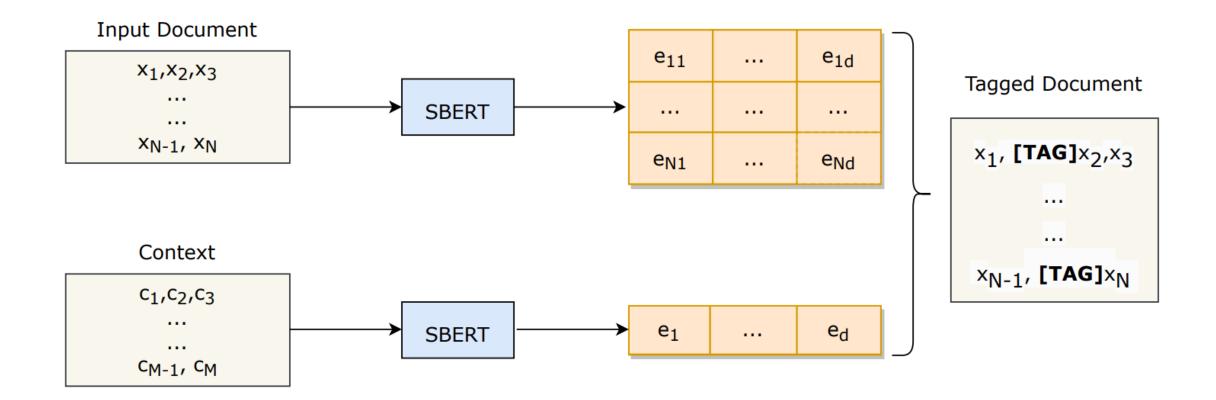


Evaluation of Methods

Model	Method	R-I	R-2	R-L	STAS (%)	Time (s)
BART	-	30.46	11.92	20.57	51.86	
BART	TAG	39.30	18.06	36.67	68.42	39
BART	EMB	40.15	18.53	37.41	68.50	303
BART	PRE	41.58	19.55	38.74	71.90	31
BART	PRE+TAG	41.66	19.57	38.83	72.36	40

Passali, T., & Tsoumakas, G. (2024) Controllable Abstractive Summarization with Arbitrary Textual Context Under review (Natural Language Engineering)

Towards Arbitrary Textual Context



Article: (CNN)President Barack Obama took part in a roundtable discussion this week on climate change, refocusing on the issue from a public health vantage point. [..] The EPA estimates that, between 1970 and 2010, the act and its amendments prevented 365,000 early deaths from particulate matter alone. "No challenge poses more of a public threat than climate change" the President told me. When I asked about the strength of the science supporting the direct relationship between climate change and public health, he said, "We know as temperatures rise, insect-borne diseases potentially start shifting up. [..] While in L.A., he said, the air was so bad that it prevented him from running outside. He remembers the air quality alerts and how people with respiratory problems had to stay inside. He credits the Clean Air Act with making Americans "a lot" healthier, in addition to being able to "see the mountains in the background because they aren't covered in smog." [...]

Ground Truth Summary: "No challenge poses more of a public threat than climate change," the President says. He credits the Clean Air Act with making Americans "a lot" healthier.

.

$$x \prime_i = g(x_i,c_i) = egin{cases} [ext{TAG},w^i_j] ext{ if } ext{sim}(w^i_j,c_i) \geq t \ [w^i_j] ext{ otherwise} \end{cases}$$

Tagged Article: (CNN)[TAG]President` Barack Obama took part in a roundtable discussion this week on [TAG]climate [TAG]change, refocusing on the issue from a public [TAG]health vantage point. [..] The EPA estimates that, between 1970 and 2010, the act and its amendments prevented 365,000 early deaths from particulate matter alone. "No [TAG]challenge poses more of a public [TAG]threat than [TAG]climate [TAG]change" the [TAG]President told me. When I asked about the strength of the science supporting the direct relationship between [TAG]climate [TAG]change and public [TAG]health, he said, "We know as temperatures rise, insect-borne diseases potentially start shifting up. [..] While in L.A., he said, the [TAG]air was so bad that it prevented him from running outside. He remembers the [TAG]air quality alerts and how people with respiratory problems had to stay inside. He credits the [TAG]Clean [TAG]Air [TAG]Act with making [TAG]Americans "a lot" [TAG]healthier, in addition to being able to "see the mountains in the background because they aren't covered in smog." [...]

Passali, T., & Tsoumakas, G. (2024) Controllable Abstractive Summarization with Arbitrary Textual Context Under review (Natural Language Engineering)

Need for Hallucination Aware Evaluation

Original Document: (CNN) Everybody loves a good comeback story - especially one that's dino-sized. After its name was **booted** from science books for more than a century, a new study suggests that the Brontosaurus belongs to its own genera, and therefore deserves its own name. O.C. Marsh first named the Brontosaurus in 1879, after he received 25 crates of bones discovered at Como Bluff, Wyoming, according to the Yale Peabody Museum of Natural History. Similar to, though not as large as the Apatosaurus discovered a couple of years prior, Marsh named the dinosaur, "Brontosaurus," or "thunder lizard." Apatosaurus had three sacral vertebrae in its hip region and Brontosaurus had five, according to the museum's website, so Marsh gave the dinosaurs two different names. Later it was discovered that the number of sacral vertebrae is related to age: as the animal gets older, two of the vertebrae fuse to the sacrum. Paleontologist Elmer Riggs concluded in 1903 that the Brontosaurus was really a young Apatosaurus, and therefore must go by that name, according to the museum. Emanuel Tschopp, a paleontologist at the Nova University of Lisbon, Portugal, led this latest study, which took five years and included visits to 20 museums in Europe and the United States to collect data. By examining "500 anatomical traits," Tschopp said he was able to "reconstruct the family tree" of Diplodocids - the family Apatosaurus and Brontosaurus belong to. Tschopp "looked at every single specimen," according to Jacques Gauthier, curator of vertebrate paleontology at Yale Peabody Museum and "noted their characteristics," plugging data into an algorithm that revealed "five species in the group of Diplodocids." Two of them are Brontosaurus-like and three are Apatosaurus-like, Gauthier said. While his findings have earned the excitement of Brontosaurus fans everywhere, Tschopp said he is "expecting a debate about the case of Brontosaurus." "We think we have good evidence," he said, "But I know there are other research groups that do not completely agree." For Gauthier, Tschopp's discovery means changes are coming to the original Brontosaurus skeleton that has lived at the Yale Peabody Museum of Natural History since 1936. "We're definitely going to have to change the label," he said.

CTRLsum

Science & Health: A new study suggests the Brontosaurus belongs to its own genera, and therefore deserves its own name. The study was conducted by a paleontologist at the Nova University of Lisbon, Portugal. It was published in the journal Science & Health.

Neuroscience: New study suggests Brontosaurus belongs to its own genera. "Neuroscience is the future of dinosaurs," says paleontologist Emanuel Tschopp.

BARTtag

Science & Health: A new study suggests that the Brontosaurus belongs to its own genera. The study took five years and included visits to 20 museums in Europe and the United States.

Neuroscience: A new study suggests that the Brontosaurus belongs to its own genera. O.C. Marsh first named the dinosaur in 1879, after he received 25 crates of bones.

Passali, T., & Tsoumakas, G. (2024) Controllable Abstractive Summarization with Arbitrary Textual Context Under review (Natural Language Engineering)

Results on the MacDoc dataset

	R 1	R2	RL	BertScore	REL	cos
BART	30.36	10.49	20.41	87.13	-	-
PEGASUS	27.51	9.10	19.10	86.29	-	-
GPT-3.5	26.17	8.45	16.80	87.00	0.77	0.42
GPT-4	26.93	8.55	16.86	87.00	0.76	0.46
Claude	25.42	7.77	16.03	85.60	0.74	0.52
LLaMA	25.68	8.32	16.56	85.78	0.74	0.44
Mistral	27.09	8.68	17.18	86.54	0.77	0.39
CTRLSum	25.75	9.77	19.64	87.57	0.82	0.41
BART _{tag} (Ours)	29.84	10.50	20.79	86.98	0.85	0.34

REL

- Given a generated summary S, we extract the sentence from the summary that is closest to the requested topic
- Then, REL is computed as the maximum of all the similarities between the selected sentence representation and each of the sentence representations of the original document

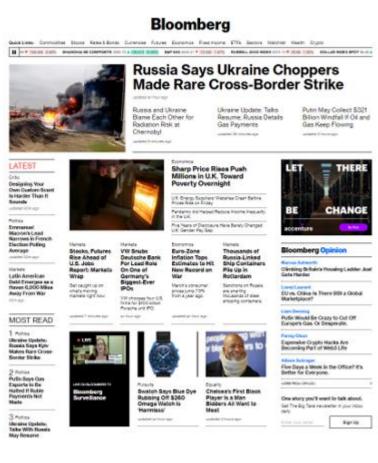
Healthcare and Finance Apps

Passali, Gidiotis, Chatzikyriakidis, Tsoumakas (2021) Towards Human-Centered Summarization: A Case Study on Financial News, Proc. EACL Workshop on Bridging HCI and NLP

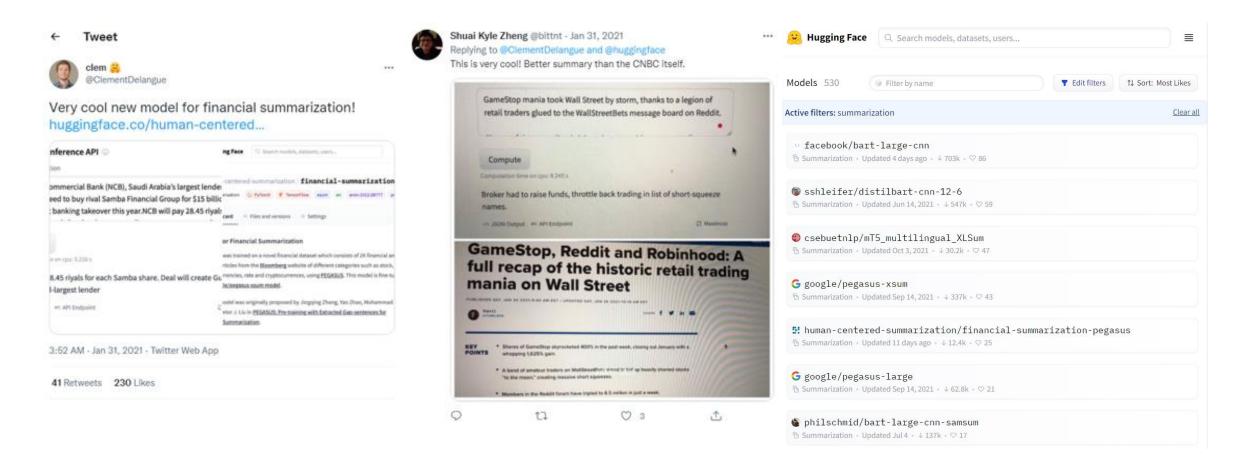
Financial Summarization

Data collection from Bloomberg's Market and Financial News API

PEGASUS model pre-trained on C4 and HugeNews, fine-tuned on the XSum news dataset, and further finetuned on our financial data set



Financial Summarization



Financial Summarization

Medoid Al 1,274 followers 2w • S

Our new advanced financial summarization model is here! \mathscr{D} With over 40k downloads in just the past month, our base financial summarization model is ranked 10th in the **Hugging Face** summarization category (8th in terms of likes), competing with models from giants like Google and Meta. Moreover, our base model powers web apps like FLUEnT and Financial-Researcher (found in Hugging Face Spaces).

Now, we're thrilled to introduce our new, more powerful model that offers more than a 16% increase in ROUGE scores (similarity to a human-generated summary) compared to our base model. What's more, our advanced model can also be provided through a managed API with several convenient plans tailored to different use cases and workloads, ensuring a seamless experience for both personal and enterprise access.

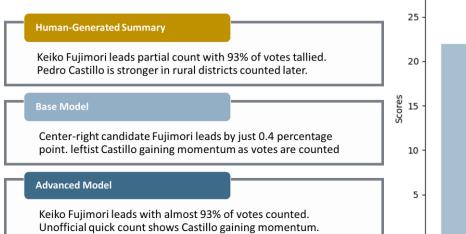
In the images, you can see:

 A comparative example of summaries generated by our models for a random Bloomberg article compared to a summary generated by a human expert (target summary)

Detailed metric comparison of the two models

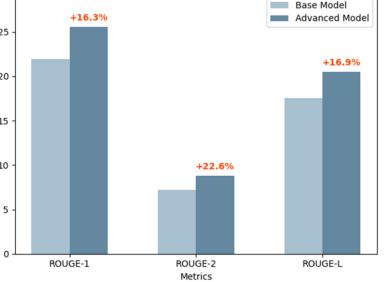
Would you like to try our advanced model through our managed API access and tailored plans? Get in touch with us! 🕍

#NLP #fintech #finance #crypto #HuggingFace #artificialintelligence #medoidai



Model	R-I	R-2	R-L
ChatGPT* zero shot	15.90	3.49	14.38
Medoid AI Base	21.98	7.20	17.56
Medoid Al Advanced	25.56	8.83	20.52

* **Prompt:** Summarize the text below in two sentences



"A global survey by 3M that found 88% of people think scientists should speak in easy-to-understand language"

Clinical Studies, Scientific Publications Plain Language Summary (PLS)

General Audience

Giannouris, Myridis, Passali, Tsoumakas (2024) Plain Language Summarization of Clinical Trials In Proceedings of DeTermIt workshop @ LREC-COLING 2024, pages 60–67, Torino, Italia.

Lay Summarization of Clinical Trials

Careers Investors Q Contact Us

Home > Our Science > Clinical Trials > Plain Language Study Results Summaries

Plain Language Study Results Summaries

		Length		Clinical Trials			Results		
ld	Question	Source	Target	Train	Val	Test	RI	R2	RL
QI	Why was this study done?	641	321	78	13	18	53,3 I	26,98	33,26
Q2	What happened during the study?	146	559	74	13	18	47,54	19,07	25,89
Q3	What were the results of the study?	-	-	-	-	-	-	-	-
Q4	What medical problems did patients have during the study?	663	421	103	13	18	77,49	68,98	73,09
Q5	Were there any serious medical problems?	663	131	107	13	18	55,47	38,44	45,48

Giannouris, Myridis, Passali, Tsoumakas (2024) Plain Language Summarization of Clinical Trials In Proceedings of DeTermIt workshop @ LREC-COLING 2024, pages 60–67, Torino, Italia.

Lay Summarization of Clinical Trials

Туре	Example				
Numerical Error	In this study, 5 out of 17 (17%) participants who received pregabalin 5 mg/kg/day				
	had at least 1 medical problem				
Туро	This study compared 2 groups of patients to find out if patients taking palbociclib in				
	combination with letrozole had their cance	er get better compared to patients taking a			
	placebo The patients and researchers did not know who took palbocciclib				
Hallucinations	Target summary	Model Generated Summary			
	However, invasive meningococcal dis-	However, invasive disease may be pre-			
	ease may be prevented with a vac-	vented with a vaccine. A vaccine is a			
	cine. A vaccine is a type of medicine	type of medicine that helps people fight			
	that helps people fight off germs.	off germs. Menacwy-tt (nimenrix) is a			
	Meningococcal disease is caused by	vaccine approved in the United States,			
	the meningococcus germ. There are	the US, and the European Union for the			
	different types of this germ. For exam-	prevention of invasive disease.			
	ple, meningococcal type a disease is				
	caused by the meningococcus a germ.				
	Menacwy-tt (nimenrix) is a vaccine ap-				
	proved in Europe for the prevention of				
	meningococcal disease.				

Stefanou, Passali, Tsoumakas (2024) AUTH at BioLaySumm 2024: Bringing Scientific Content to Kids. In Proceedings of 23rd Workshop on Biomedical Natural Language Processing, pages 380–389, Bangkok, Thailand.

Lay Summarization for Kids

7th out of 57 participants in the BioLaySumm 2024 shared task

• Abstractive summarization of biomedical publications in lay terms

Our approach

- BioBART-v2 model fine-tuned using abstracts from eLife, PLOS
- Some training samples had high complexity summaries
- New SKJ dataset with content from the Science Journal for Kids
- Added synthetic summaries using GPT4 in a few-shot fashion, including summaries from the SJK dataset in the prompt
- Improved readability of lay summaries

Neural abstractive summarization

Interesting research challenges (long text, uncertainty, control)

Applications in two important domains (finance, healthcare)

Team

Alexios Gidiotis PhD Student **Tatiana Passali** PhD Student Stathis Chatzikyriakidis

Polydoros Giannouris

Loukritia Stefanou

Thodoris Myridis

MedoidAl

Thank You

Grigorios Tsoumakas

greg@csd.auth.gr greg@medoid.ai

